以太坊價格 以太坊價格
Ctrl+D 以太坊價格
ads
首頁 > USDT > Info

ECT:filecoin探索之路:復制證明(一)

Author:

Time:1900/1/1 0:00:00

一、復制證明簡介

引用官方的解釋就是:“InordertoregisterasectorwiththeFilecoinnetwork,thesectorhastobesealed.Sealingisacomputation-heavyprocessthatproducesauniquerepresentationofthedataintheformofaproof,calledProof-of-ReplicationorPoRep.”簡單來說,復制證明就是在對扇區進行封裝的過程中生成的扇區唯一標識。

復制證明要用到三種特殊參數:數據本身、執行密封的礦工參與者、特定礦工密封特定數據的時間。一旦其中的一個參數發生變化,那么得到的復制證明結果將會完全不同。換句話說,如果同一個礦工稍后試圖密封相同的數據,那么這將導致不同的PoRep證明。

復制證明是一個很大的計算過程,接下來我將會分為兩部分:P1、P2,從代碼的形式給讀者介紹復制證明的工作原理。

二、P1代碼解析

在本次文章,我將主要介紹32GB封裝的P1的過程。在此階段,會發生PoRep的SDR編碼和復制。

因為是第一次,我這里提一句,扇區的不同狀態會觸發miner不同的執行方法,1.16版本可以看externstorage-sealingfsm.go文件約460行代碼內容,代碼中記錄了miner不同的狀態以及觸發方法。這里我只放P1狀態的代碼。

????????...

????????...

????????case?Packing:

????????????????return?m.handlePacking,?processed,?nil

????????case?GetTicket:

????????????????return?m.handleGetTicket,?processed,?nil

????????case?PreCommit1:

????????????????return?m.handlePreCommit1,?processed,?nil

????????case?PreCommit2:

????????????????return?m.handlePreCommit2,?processed,?nil

????????...

????????...

可以看到,PreCommit1調用的是handlePreCommit1方法,從下邊可以看出,利用SealPreCommit1方法得到P1結果。

func?(m?*Sealing)?handlePreCommit1(ctx?statemachine.Context,?sector?SectorInfo)?error?{

????????...

????????...

????????pc1o,?err?:=?m.sealer.SealPreCommit1(sector.sealingCtx(ctx.Context()),?m.minerSector(sector.SectorType,?sector.SectorNumber),?sector.TicketValue,?sector.pieceInfos())

????????if?err?!=?nil?{

????????????????return?ctx.Send(SectorSealPreCommit1Failed{xerrors.Errorf("seal?pre?commit(1)?failed:?%w",?err。)

????????}

????????return?ctx.Send(SectorPreCommit1{

????????????????PreCommit1Out:?pc1o,

????????})

}

讓我們深入看一下SealPreCommit1方法,這里我們最終調用的是:func(sb*Sealer)SealPreCommit1(...)方法。方法中有我們常常遇到的方法:AcquireSector(...)、Unpadded()。

AcquireSector方法是根據傳入的類型與sectorID一起,組合成對應的path。

Uppadded方法是返回一個Piece的未填充大小,以字節為單位,計算公式是:s-(s/128)。有未填充大小,自然就有填充大小,填充大小的計算方法為Padded(),計算公式是:s+(s/127)

func?(sb?*Sealer)?SealPreCommit1(ctx?context.Context,?sector?storage.SectorRef,?ticket?abi.SealRandomness,?pieces?abi.PieceInfo)?(out?storage.PreCommit1Out,?err?error)?{

????????paths,?done,?err?:=?sb.sectors.AcquireSector(ctx,?sector,?storiface.FTUnsealed,?storiface.FTSealed|storiface.FTCache,?storiface.PathSealing)

????????if?err?!=?nil?{

????????????????return?nil,?xerrors.Errorf("acquiring?sector?paths:?%w",?err)

????????}

????????...

????????...

????????...

????????var?sum?abi.UnpaddedPieceSize

????????for?_,?piece?:=?range?pieces?{

????????????????sum?+=?piece.Size.Unpadded()

????????}

????????//?根據扇區證明類型獲取扇區大小

????????ssize,?err?:=?sector.ProofType.SectorSize()

Compound新提案:擬調整BAT、COMP等五個借貸市場的借款上限和抵押系數:12月27日消息,Gauntlet在Compound創建新社區提案141,建議修改五個Compound v2市場的借款上限和抵押系數,包括BAT、COMP、SUSHI、LINK、UNI,投票將在兩天后開始。[2022/12/27 22:09:36]

????????if?err?!=?nil?{

????????????????return?nil,?err

????????}

????????//?這里比較一次總piece大小和要求的扇區大小是否一致

????????ussize?:=?abi.PaddedPieceSize(ssize).Unpadded()

????????if?sum?!=?ussize?{

????????????????return?nil,?xerrors.Errorf("aggregated?piece?sizes?don't?match?sector?size:?%d?!=?%d?(%d)",?sum,?ussize,?int64(ussize-sum))

????????}

????????//?TODO:?context?cancellation?respect

????????p1o,?err?:=?ffi.SealPreCommitPhase1(

????????????????sector.ProofType,

????????????????paths.Cache,

????????????????paths.Unsealed,

????????????????paths.Sealed,

????????????????sector.ID.Number,

????????????????sector.ID.Miner,

????????????????ticket,

????????????????pieces,

????????)

????????...

????????...

}

接下來,一切準備就緒,我們將要開始我們的P1遠游了,因為接下來的代碼都不屬于lotus,上面方法中我們可以看到ffi.SealPreCommitPhase1,ffi其實使用的是https://github.com/filecoin-project/filecoin-ffi庫,我們通過這個庫的如下方法,轉入rust語言去實現P1。

func?SealPreCommitPhase1(registeredProof?RegisteredSealProof,?cacheDirPath?SliceRefUint8,?stagedSectorPath?SliceRefUint8,?sealedSectorPath?SliceRefUint8,?sectorId?uint64,?proverId?*ByteArray32,?ticket?*ByteArray32,?pieces?SliceRefPublicPieceInfo)?(byte,?error)?{

????????resp?:=?C.seal_pre_commit_phase1(registeredProof,?cacheDirPath,?stagedSectorPath,?sealedSectorPath,?C.uint64_t(sectorId),?proverId,?ticket,?pieces)

????????defer?resp.destroy()

????????if?err?:=?CheckErr(resp);?err?!=?nil?{

????????????????return?nil,?err

????????}

????????return?resp.value.copy(),?nil

}

C庫其實就是ffi庫自身的rust庫,調用的方法如下所示:

fn?seal_pre_commit_phase1(

????registered_proof:?RegisteredSealProof,

????cache_dir_path:?c_slice::Ref<u8>,

????staged_sector_path:?c_slice::Ref<u8>,

????sealed_sector_path:?c_slice::Ref<u8>,

????sector_id:?u64,

????prover_id:?&,

????ticket:?&,

????pieces:?c_slice::Ref<PublicPieceInfo>,

)?->?repr_c::Box<SealPreCommitPhase1Response>?{

????catch_panic_response("seal_pre_commit_phase1",?||?{

????????let?public_pieces:?Vec<PieceInfo>?=?pieces.iter().map(Into::into).collect();

????????let?result?=?seal::seal_pre_commit_phase1(

????????????registered_proof.into(),

????????????as_path_buf(&cache_dir_path)?,

????????????as_path_buf(&staged_sector_path)?,

????????????as_path_buf(&sealed_sector_path)?,

????????????*prover_id,

????????????SectorId::from(sector_id),

報告:今年三季度國內元宇宙投融資總額達228.4億元,環比降低8.9%:10月11日消息,據新浪VR聯合企查查聯合發布的《2022年Q3國內元宇宙投融資報告》,2022年三季度,國內元宇宙投融資總額達到了228.4億元人民幣,投融資總額較二季度減少22.2億元,環比降低8.9%;投資事件總數為339起,較二季度增加188起,環比增長125%。其中,三季度已披露融資額的企業中,融資過億元人民幣的事件有49起,在投融資事件總數中占比14.5%,融資總額196億元,占融資總額超86%。

從賽道分布來看,國內元宇宙市場投融資涉及領域主要包括硬件、軟件、基礎設施、場景應用四大板塊。其中硬件板塊共發生270起投融資事件,占投融資事件總數的79.6%;硬件板投融資總額216億元,占投融資總額的64%,硬件板塊投融資數量和總額較二季度增長均超過10倍。

此外,報告稱,國內元宇宙融資額前十名企業融資總額高達115.84億元,占投融資總數的50.7%,國內投融資分布總體兩級分化趨勢顯著,強者恒強局面初步形成。[2022/10/11 10:30:59]

????????????*ticket,

????????????&public_pieces,

????????)?;

????????let?result?=?serde_json::to_vec(&result)?;

????????Ok(result.into_boxed_slice().into())

????})

}

上面的seal庫是:https://github.com/filecoin-project/rust-filecoin-proofs-api。在這個方法對應的文件中,我們可以看到很多方法都對應了一個*__inner方法。實際上seal_pre_commit_phase1只是做了個中轉。我們可以直接看seal_pre_commit_phase1_inner方法

pub?fn?seal_pre_commit_phase1<R,?S,?T>(

????registered_proof:?RegisteredSealProof,

????cache_path:?R,

????in_path:?S,

????out_path:?T,

????prover_id:?ProverId,

????sector_id:?SectorId,

????ticket:?Ticket,

????piece_infos:?&,

)?->?Result<SealPreCommitPhase1Output>

where

????R:?AsRef<Path>,

????S:?AsRef<Path>,

????T:?AsRef<Path>,

{

????ensure!(

????????registered_proof.major_version()?==?1,

????????"unusupported?version"

????);

????with_shape!(

????????u64::from(registered_proof.sector_size()),

????????seal_pre_commit_phase1_inner,

????????registered_proof,

????????cache_path.as_ref(),

????????in_path.as_ref(),

????????out_path.as_ref(),

????????prover_id,

????????sector_id,

????????ticket,

????????piece_infos

????)

}

在inner方法中,filecoin_proofs_v1::seal_pre_commit_phase1,會調用證明子系統的實現部分。filecoin_proofs_v1使用的庫是:https://github.com/filecoin-project/rust-fil-proofs。

fn?seal_pre_commit_phase1_inner<Tree:?'static?+?MerkleTreeTrait>(

????registered_proof:?RegisteredSealProof,

????cache_path:?&Path,

????in_path:?&Path,

????out_path:?&Path,

????prover_id:?ProverId,

????sector_id:?SectorId,

????ticket:?Ticket,

????piece_infos:?&,

)?->?Result<SealPreCommitPhase1Output>?{

????let?config?=?registered_proof.as_v1_config();

????let?output?=?filecoin_proofs_v1::seal_pre_commit_phase1::<_,?_,?_,?Tree>(

????????config,

????????cache_path,

????????in_path,

????????out_path,

????????prover_id,

????????sector_id,

????????ticket,

????????piece_infos,

英國新當選首相曾公開支持加密貨幣:金色財經報道,當選英國保守黨新黨首的伊麗莎白·特拉斯(Elizabeth Truss)曾于2018年1月在推特上表示支持加密貨幣,呼吁應該擱置限制加密貨幣發展的法規。“我們應該以不限制其潛力的方式歡迎加密貨幣,通過取消限制繁榮的法規來解放自由企業區。”

不過從那時之后,特拉斯就沒有公開表示過支持加密貨幣,也沒有擁護友好的法規。

據此前報道,當地時間9月5日,英國議會下院保守黨籍議員團體“1922委員會”主席格雷厄姆·布雷迪公布保守黨黨首選舉的投票結果。現任外交大臣伊麗莎白·特拉斯擊敗前財政大臣里希·蘇納克,當選為英國執政的保守黨新黨首。(CoinDesk)[2022/9/6 13:10:49]

????)?;

????let?filecoin_proofs_v1::types::SealPreCommitPhase1Output::<Tree>?{

????????labels,

????????config,

????????comm_d,

????}?=?output;

????Ok(SealPreCommitPhase1Output?{

????????registered_proof,

????????labels:?Labels::from_raw::<Tree>(registered_proof,?&labels)?,

????????config,

????????comm_d,

????})

}

filecoin_proofs_v1::seal_pre_commit_phase1方法就是真正實現P1的地方,我將會在這里詳細講解P1,使P1將在這里一一浮出水面。

pub?fn?seal_pre_commit_phase1<R,?S,?T,?Tree:?'static?+?MerkleTreeTrait>(

????porep_config:?PoRepConfig,

????cache_path:?R,

????in_path:?S,

????out_path:?T,

????prover_id:?ProverId,

????sector_id:?SectorId,

????ticket:?Ticket,

????piece_infos:?&,

)?->?Result<SealPreCommitPhase1Output<Tree>>

where

????R:?AsRef<Path>,

????S:?AsRef<Path>,

????T:?AsRef<Path>,

{

????info!("seal_pre_commit_phase1:start:?{:?}",?sector_id);

????//?Sanity?check?all?input?path?types.

????ensure!(

????????metadata(in_path.as_ref())?.is_file(),

????????"in_path?must?be?a?file"

????);

????ensure!(

????????metadata(out_path.as_ref())?.is_file(),

????????"out_path?must?be?a?file"

????);

????ensure!(

????????metadata(cache_path.as_ref())?.is_dir(),

????????"cache_path?must?be?a?directory"

????);

????let?sector_bytes?=?usize::from(PaddedBytesAmount::from(porep_config));

????fs::metadata(&in_path)

????????.with_context(||?format!("could?not?read?in_path={:?})",?in_path.as_ref().display()))?;

????fs::metadata(&out_path)

????????.with_context(||?format!("could?not?read?out_path={:?}",?out_path.as_ref().display()))?;

????//?Copy?unsealed?data?to?output?location,?where?it?will?be?sealed?in?place.

????fs::copy(&in_path,?&out_path).with_context(||?{

????????format!(

????????????"could?not?copy?in_path={:?}?to?out_path={:?}",

????????????in_path.as_ref().display(),

????????????out_path.as_ref().display()

????????)

????})?;

????let?f_data?=?OpenOptions::new()

????????.read(true)

????????.write(true)

????????.open(&out_path)

????????.with_context(||?format!("could?not?open?out_path={:?}",?out_path.as_ref().display()))?;

武漢大學教授蔡恒進:區塊鏈技術能夠為元宇宙提供時間秩序:金色財經報道,武漢大學計算機學院教授、著名空間物理學家蔡恒進在接受采訪時表示,元宇宙本質上是意識世界的產物,是人類意識世界的一個延伸。他認為,元宇宙對經濟的促進作用主要反映在對無形資產的精準定價上,無形資產未來有機會成為人類文明的第二增長曲線。談及區塊鏈技術,他強調區塊鏈能夠為元宇宙提供時間秩序。他說:“大家會認為區塊鏈是Web3.0的核心技術,因為區塊鏈能夠為數字世界提供時間秩序,元宇宙其實也需要區塊鏈技術提供時間秩序。缺少區塊鏈的元宇宙就很難傳遞價值,也無法促進創新和協作。”(財聯社)[2022/8/12 12:21:26]

????//?Zero-pad?the?data?to?the?requested?size?by?extending?the?underlying?file?if?needed.

????f_data.set_len(sector_bytes?as?u64)?;

????let?data?=?unsafe?{

????????//?創建由文件支持的可寫內存映射

????????MmapOptions::new()

????????????.map_mut(&f_data)

????????????.with_context(||?format!("could?not?mmap?out_path={:?}",?out_path.as_ref().display()))?

????};

????let?compound_setup_params?=?compound_proof::SetupParams?{

????????vanilla_params:?setup_params(

????????????PaddedBytesAmount::from(porep_config),

????????????usize::from(PoRepProofPartitions::from(porep_config)),

????????????porep_config.porep_id,

????????????porep_config.api_version,

????????)?,

????????partitions:?Some(usize::from(PoRepProofPartitions::from(porep_config))),

????????priority:?false,

????};

????//?利用param得到public_params,其vanilla_params.graph字段,就是構建出來的圖的數據結構。

????let?compound_public_params?=?<StackedCompound<Tree,?DefaultPieceHasher>?as?CompoundProof<

????????StackedDrg<'_,?Tree,?DefaultPieceHasher>,

????????_,

????>>::setup(&compound_setup_params)?;

????trace!("building?merkle?tree?for?the?original?data");

????let?(config,?comm_d)?=?measure_op(Operation::CommD,?||?->?Result<_>?{

????????let?base_tree_size?=?get_base_tree_size::<DefaultBinaryTree>(porep_config.sector_size)?;

????????let?base_tree_leafs?=?get_base_tree_leafs::<DefaultBinaryTree>(base_tree_size)?;

????????ensure!(

????????????compound_public_params.vanilla_params.graph.size()?==?base_tree_leafs,

????????????"graph?size?and?leaf?size?don't?match"

????????);

????????trace!(

????????????"seal?phase?1:?sector_size?{},?base?tree?size?{},?base?tree?leafs?{}",

????????????u64::from(porep_config.sector_size),

????????????base_tree_size,

????????????base_tree_leafs,

????????);

????????let?mut?config?=?StoreConfig::new(

????????????cache_path.as_ref(),

????????????CacheKey::CommDTree.to_string(),

????????????default_rows_to_discard(base_tree_leafs,?BINARY_ARITY),

????????);

????????let?data_tree?=?create_base_merkle_tree::<BinaryMerkleTree<DefaultPieceHasher>>(

????????????Some(config.clone()),

????????????base_tree_leafs,

????????????&data,

????????)?;

????????drop(data);

????????config.size?=?Some(data_tree.len());

Netflix 推出針對美國觀眾的 NFT 尋寶游戲:金色財經報道,Netflix 的一部名為 Love, Death + Robots 的動畫系列揭示了讓觀眾鑄造 NFT 的二維碼。該功能僅適用于美國用戶通過 MetaMask 錢包或 Coinbase 賬戶。用戶將支付Gas費來鑄造他們通過掃描二維碼獲得的NFT。[2022/5/26 3:42:01]

????????let?comm_d_root:?Fr?=?data_tree.root().into();

????????let?comm_d?=?commitment_from_fr(comm_d_root);

????????drop(data_tree);

????????Ok((config,?comm_d))

????})?;

????trace!("verifying?pieces");

????ensure!(

????????verify_pieces(&comm_d,?piece_infos,?porep_config.into())?,

????????"pieces?and?comm_d?do?not?match"

????);

????let?replica_id?=?generate_replica_id::<Tree::Hasher,?_>(

????????&prover_id,

????????sector_id.into(),

????????&ticket,

????????comm_d,

????????&porep_config.porep_id,

????);

????let?labels?=?StackedDrg::<Tree,?DefaultPieceHasher>::replicate_phase1(

????????&compound_public_params.vanilla_params,

????????&replica_id,

????????config.clone(),

????)?;

????let?out?=?SealPreCommitPhase1Output?{

????????labels,

????????config,

????????comm_d,

????};

????info!("seal_pre_commit_phase1:finish:?{:?}",?sector_id);

????Ok(out)

}

P1實現解釋

上邊seal_pre_commit_phase1的代碼中,我們可以看到有三個path,這三個path分別對應:in_path->unsealedpath、out_path->sealedpath、cache_path->cachepath。代碼會先去檢查這三個path,他們兩個是文件,一個是文件夾。

檢查完path后我們可以看到fs::copy方法,它將unsealed文件拷貝到了sealed文件中,完成封裝。

Copy完成后拿出sealed文件的數據,并利用.set_len()方法填充數據(或刪減),使sealed數據達到證明類型配置規定的扇區大小。

setup_params()

setup_params()方法利用證明類型配置構建啟動參數。這里傳入的參數為:扇區大小、分區數、證明類型id、證明類型版本。分區數可看https://github.com/filecoin-project/rust-filecoin-proofs-api/blob/23ae2893741829bddc29d7211e06c914bab5423c/src/registry.rs中的partitions()方法,在對應https://github.com/filecoin-project/rust-fil-proofs/blob/ec2ef88a17ffed991b64dc8d96b30c36b275eca0/filecoin-proofs/src/constants.rs得到具體值。我分析以32GB扇區為主,因此分區數為10。另外三個就不講了,跟分區數一樣,都是從這兩個文件得到的。

pub?fn?setup_params(

????sector_bytes:?PaddedBytesAmount,

????partitions:?usize,

????porep_id:?,

????api_version:?ApiVersion,

)?->?Result<stacked::SetupParams>?{

????//?得到挑戰層數和最大挑戰次數

????let?layer_challenges?=?select_challenges(

????????partitions,

????????*POREP_MINIMUM_CHALLENGES

????????????.read()

????????????.expect("POREP_MINIMUM_CHALLENGES?poisoned")

????????????.get(&u64::from(sector_bytes))

????????????.expect("unknown?sector?size")?as?usize,

????????*LAYERS

????????????.read()

????????????.expect("LAYERS?poisoned")

????????????.get(&u64::from(sector_bytes))

????????????.expect("unknown?sector?size"),

????);

????let?sector_bytes?=?u64::from(sector_bytes);

????ensure!(

????????sector_bytes?%?32?==?0,

????????"sector_bytes?({})?must?be?a?multiple?of?32",

????????sector_bytes,

????);

????let?nodes?=?(sector_bytes?/?32)?as?usize;????//?節點數,SDR共有11層,每一層的節點數量相當于1GiB的字節數量。

????let?degree?=?DRG_DEGREE;????//?用于所有?DRG?圖的基礎度數,?DRG_DEGREE=6。

????let?expansion_degree?=?EXP_DEGREE;?//大小是8,上一層中抽取的節點數量,用來計算當前層的節點數據

????Ok(stacked::SetupParams?{

????????nodes,

????????degree,

????????expansion_degree,

????????porep_id,

????????layer_challenges,

????????api_version,

????})

}

Merkletree和對應comm_d的生成

看完setup_params方法,讓我們繼續看seal_pre_commit_phase1中的compound_public_params參數,這里實際上set_up的時候,將compound_setup_params參數的值賦予進去,并增加了一個至關重要的vanilla_params.graph字段,就是構造出來的圖的數據結構

??接下來我們可以看到seal_pre_commit_phase1方法的70行,在這一段代碼用于生成markletree和comm_d

????let?(config,?comm_d)?=?measure_op(Operation::CommD,?||?->?Result<_>?{

????????let?base_tree_size?=?get_base_tree_size::<DefaultBinaryTree>(porep_config.sector_size)?;

????????let?base_tree_leafs?=?get_base_tree_leafs::<DefaultBinaryTree>(base_tree_size)?;

????????ensure!(

????????????compound_public_params.vanilla_params.graph.size()?==?base_tree_leafs,

????????????"graph?size?and?leaf?size?don't?match"

????????);

????????trace!(

????????????"seal?phase?1:?sector_size?{},?base?tree?size?{},?base?tree?leafs?{}",

????????????u64::from(porep_config.sector_size),

????????????base_tree_size,

????????????base_tree_leafs,

????????);

????????let?mut?config?=?StoreConfig::new(

????????????cache_path.as_ref(),

????????????CacheKey::CommDTree.to_string(),

????????????default_rows_to_discard(base_tree_leafs,?BINARY_ARITY),

????????);

????????//?創建默克爾樹,根據其樹根得到comm_d

????????let?data_tree?=?create_base_merkle_tree::<BinaryMerkleTree<DefaultPieceHasher>>(

????????????Some(config.clone()),

????????????base_tree_leafs,

????????????&data,

????????)?;

????????drop(data);

????????config.size?=?Some(data_tree.len());

????????let?comm_d_root:?Fr?=?data_tree.root().into();

????????let?comm_d?=?commitment_from_fr(comm_d_root);

????????drop(data_tree);

????????Ok((config,?comm_d))

????})?;

這里我們會生成treestoreconfig,然后利用config、base_tree_leafs、sealed填充數據,生成一個merkletree。得到了merkletree后就可以得到merkletree的根。再利用merkletree的根,通過commitment_from_fr算出comm_d。

生成副本id(replica_id)

當我們拿到了comm_d后,會利用verify_pieces方法驗證一下comm_d,這個就不講了,感興趣的可以自己去看代碼。

讓我們看一下副本id是如何生成的

????let?replica_id?=?generate_replica_id::<Tree::Hasher,?_>(

????????&prover_id,

????????sector_id.into(),

????????&ticket,

????????comm_d,

????????&porep_config.porep_id,

????);

利用數據本身生成得到了comm_d,這里再加上礦工id、扇區id、ticket,證明類型id。就能得到replicaid值。

///?Generate?the?replica?id?as?expected?for?Stacked?DRG.

pub?fn?generate_replica_id<H:?Hasher,?T:?AsRef<>>(

????prover_id:?&,

????sector_id:?u64,

????ticket:?&,

????comm_d:?T,

????porep_seed:?&,

)?->?H::Domain?{

????//?以鏈式方式處理輸入數據。

????let?hash?=?Sha256::new()

????????.chain_update(prover_id)

????????.chain_update(&sector_id.to_be_bytes())

????????.chain_update(ticket)

????????.chain_update(&comm_d)

????????.chain_update(porep_seed)

????????.finalize();

????bytes_into_fr_repr_safe(hash.as_ref()).into()????//通過將?le_bytes?的最重要的兩位歸零,將?32?字節的切片轉換為?Fr::Repr。

}

生成labels

接下來就是P1最后的操作:生成labels。將public_params、復制id和treestoreconfig作為參數傳入。

????pub?fn?replicate_phase1(

????????pp:?&'a?PublicParams<Tree>,

????????replica_id:?&<Tree::Hasher?as?Hasher>::Domain,

????????config:?StoreConfig,

????)?->?Result<Labels<Tree>>?{

????????info!("replicate_phase1");

????????let?labels?=?measure_op(Operation::EncodeWindowTimeAll,?||?{

????????????Self::generate_labels_for_encoding(&pp.graph,?&pp.layer_challenges,?replica_id,?config)

????????})?

????????.0;

????????Ok(labels)

????}

這里可以看到,代碼提取出了public_params的.graph字段,就是構造出來的圖的數據結構,和public_params中包含挑戰層數和最大挑戰次數的layer_challenges。

接下來看generate_labels_for_encoding。這里可以分為多核與單核進行SDR編碼,創建labels。

????pub?fn?generate_labels_for_encoding(

????????graph:?&StackedBucketGraph<Tree::Hasher>,

????????layer_challenges:?&LayerChallenges,

????????replica_id:?&<Tree::Hasher?as?Hasher>::Domain,

????????config:?StoreConfig,

????)?->?Result<(Labels<Tree>,?Vec<LayerState>)>?{

????????let?mut?parent_cache?=?graph.parent_cache()?;

????????#

????????{

????????????if?SETTINGS.use_multicore_sdr?{

????????????????info!("multi?core?replication");

????????????????create_label::multi::create_labels_for_encoding(

????????????????????graph,

????????????????????&parent_cache,

????????????????????layer_challenges.layers(),

????????????????????replica_id,

????????????????????config,

????????????????)

????????????}?else?{

????????????????info!("single?core?replication");

????????????????create_label::single::create_labels_for_encoding(

????????????????????graph,

????????????????????&mut?parent_cache,

????????????????????layer_challenges.layers(),

????????????????????replica_id,

????????????????????config,

????????????????)

????????????}

????????}

????????#

????????{

????????????info!("single?core?replication");

????????????create_label::single::create_labels_for_encoding(

????????????????graph,

????????????????&mut?parent_cache,

????????????????layer_challenges.layers(),

????????????????replica_id,

????????????????config,

????????????)

????????}

????}

我將生成label的地址放在這里,想看的可以去看一下,這里就不細講了。

多核:https://github.com/filecoin-project/rust-fil-proofs/blob/master/storage-proofs-porep/src/stacked/vanilla/create_label/multi.rs

單核:https://github.com/filecoin-project/rust-fil-proofs/blob/master/storage-proofs-porep/src/stacked/vanilla/create_label/single.rs

三、總結

其實rust語言我接觸不多,開始的時候看得有點頭痛,最后也是硬著頭皮啃下來的。

如有大佬認為文章有不對的地方,歡迎糾正。

來源:金色財經

Tags:COMTORECTATHECOM幣storj幣前景INVECTAImathwallet錢包只能觀察

USDT
ANTIS:幻盒藝術洞見傳統文化傳奇 讓Web3.0價值自由流淌

數字化時代,依托技術賦能實體經濟是大勢所趨,自國內元宇宙概念誕生起,加入了元宇宙開放的進程,經過長時間的研發籌備,WEB3.0元宇宙平臺“幻盒藝術”重磅上線,深耕人工智能,元宇宙.

1900/1/1 0:00:00
BIT:探討公鏈競爭格局 誰更有優勢?

原文標題:《公鏈競爭II——隨想》原文作者:Maco,W3.Hitchhiker;修訂:Evelyn,W3.Hitchhiker 前言 基于上一篇對二線公鏈對比的報告,結合最新Delphi奶文.

1900/1/1 0:00:00
WEB:比特幣在2w美元波動 加密新玩家有哪些玩法?

今天比特幣漲到20k美元,漲幅7個點,當前價格是20240美元。在BTC帶動下,整個加密市場都在不同上漲,ETH漲了7個點,ENS漲了14個點.

1900/1/1 0:00:00
APE:加密貨幣崩潰迫在眉睫 交易者如何保護自己

由于美聯儲的鷹派立場,加密貨幣市場繼續保持低迷。比特幣繼續停留在1.8萬美元至1.9萬美元之間。根據主要的加密影響者JasonGoepfert的說法,散戶交易員預計會出現全面的加密崩潰.

1900/1/1 0:00:00
加密貨幣:比特幣在今年迄今為止價格下跌 50% 之后 是否值得購買?

加密貨幣在2022年經歷了相對困難的一年。世界上最大的硬幣比特幣在今年前八個月暴跌了56%以上。以太坊、索拉納和卡爾達諾等山寨幣也有類似的表現.

1900/1/1 0:00:00
BAYC:纏論解盤9.26:BTC震蕩許久 再次面臨方向選擇

BTC周末橫盤窄幅震蕩,大餅已經從19號震蕩到今天26日超過一個星期。橫有多長豎有多高,一旦選擇方向即將暴發巨大能量。當下這個位置現貨可以打底倉布局以免踏空,合約等待方向明確再順勢而為.

1900/1/1 0:00:00
ads