以太坊價格 以太坊價格
Ctrl+D 以太坊價格
ads

BTC:想做好區塊鏈數據分析?先來看看如何解決“去匿名化”這個大難題

Author:

Time:1900/1/1 0:00:00

在最近的會議演講中我經常會被問到:區塊鏈數據分析的最大挑戰是什么?我的回答就一個詞:去匿名化。

我堅定地認為,識別不同類型的參與者并理解其行為是解鎖區塊鏈分析潛力的核心挑戰。我們花費了相當多的時間來考慮這個問題以識別出與數字貨幣運動的倫理不發生沖突的正確邊界。在這篇文章里,我想進一步探討這個思路。

市場上大多數區塊鏈的架構依賴于匿名或偽匿名機制來保護其節點的隱私并實現去中心化。數據混淆機制可以將加密資產交易數據記錄在公開的賬本上讓每個人都能訪問,但是也讓分析這些數據變得異常困難。

如果不能識別參與者的身份,就很難理解區塊鏈數據集并分析出有意義的結果,而且區塊鏈分析只能徘徊在初級階段。然而,重要的一點是要理解,去匿名化區塊鏈數據集并不是要知道賬本中每個地址的真實身份,這個方向基本上是不具備可擴展性的可能。

DWF Labs從幣安提取10萬枚PERP:9月8日消息,鏈上數據顯示,12分鐘前,DWF Labs從幣安提取10萬枚PERP,約合10.9萬美元。[2023/9/8 13:27:18]

相反的,我們可以識別并理解區塊鏈中已知參與者的行為,例如交易所、OTC柜臺、礦工以及其他構成區塊鏈生態系統的核心成員。

地址數量會不知不覺誤導你

網絡的量度是區塊鏈分析中無所不在的一個指標,也是一個可以清晰地展示去匿名化威力的指標。

地址數量是最常見的一個具有誤導性的指標,因為并非所有的地址都同等重要。交易創建的一個用于臨時性轉賬的地址,顯然不能和另一個長期持有資產的錢包地址相提并論。

類似的,像幣安這樣的交易所的熱錢包,肯定也不同和我的個人錢包采用同樣的方法和指標去分析。同等對待所有地址的匿名性,注定會導致解讀的有限性并且經常會得出誤導性的結論。

澳大利亞央行利用萬事達卡和其他銀行來測試CBDC用例:金色財經報道,澳大利亞儲備銀行透露了一系列項目,這些項目將在目前正在進行的測試階段為數字美元eAUD開發用例。澳大利亞央行于當地時間周四上午宣布,這些項目將研究從線下支付到債券結算再到證券交易等各種用例。澳洲聯儲助理行長BradJones在一份聲明中表示,試點項目的參與者包括范圍廣泛的行業代表,從“小型金融科技公司到大型金融機構”。

澳大利亞央行希望在2023年年中之前完成其去年8月啟動的中央銀行數字貨幣試點。該試點項目合作伙伴包括澳大利亞和新西蘭銀行集團有限公司(ANZ)、萬事達卡、Monoova、澳大利亞債券交易所、DigiCash、聯邦銀行等。[2023/3/2 12:37:45]

匿名性vs.可解讀性

NFT公司Mintify宣布完成160萬美元的融資,Arca領投:金色財經報道,NFT交易工具公司Mintify宣布完成160萬美元的融資,Arca領投。具體估值沒有披露。Endeavour Fund、Alchemy Ventures、Psalion 以及 GSR 和 Fasanara等公司參投。[2022/10/20 16:32:51]

匿名或偽匿名身份是可伸縮的去中心化架構的關鍵因素之一,但是這也讓從區塊鏈數據集中獲取有價值的信息變得極端困難。理解這一觀點的一個辦法,就是把匿名性視為區塊鏈分析的可解讀性的一個反因子。

在區塊鏈數據集中匿名性與可解讀性之間的摩擦相對來說還比較小。一個區塊鏈數據集的匿名性越高,從中獲取有意義的信息的難度就越大。參與者的身份提供了其行為的上下文環境,而上下文環境則是可解讀性的關鍵構建模塊。

數據:3330枚BTC從未知錢包轉移至Xapo:金色財經消息,據Whale Alert數據顯示,3330枚BTC(價值77,251,915美元)從未知錢包轉移至Xapo。[2022/8/10 12:15:14]

去匿名化vs.打標簽

「你是什么」遠比「你是誰」要重要。

去匿名化區塊鏈數據集并不涉及了解每個參與者的真實身份。試圖了解每個用戶的真實身份不僅是一個意義重大的任務,而且也會讓分析工作難以突破一定的規模。

相反,我們可以試著理解一個參與者的關鍵特征來讓我們的分析達到一定程度的可解讀性。因此,不需要清楚地識別每個地址的真實身份,我們可以給地址打標簽或者附加一些描述性的元數據,來讓其行為具備一定的上下文環境。

在大規模數據中,打標簽常常要比個體識別更有效果。理解區塊鏈生態系統中特定個體的行為當然會讓分析達到更個性化的程度,但是對于在宏觀層面理解行為的趨勢就顯得相對受限了。

因此,相對與對區塊鏈地址的個體真實身份的識別,去匿名性的挑戰與地址的關鍵性屬性的標注的關系更大。我們如何實現這一點?

機器學習會是一個優秀的解決方案

標注或者去匿名化區塊鏈的思路可以讓區塊鏈分析更好地生態中已知參與者的行為模式和特征。直覺上我們可以考慮創建一些規則來分析區塊鏈生態系統中的不同成員,例如:

“如果一個地址持有大量比特幣地址并且一次執行100個交易,那么這是一個交易所地址……”

雖然很有吸引力,但是基于規則的方法將很快失效,無法再提供有用的信息。下面列出了部分原因:

預置知識的完整性:基于規則的分類會假定我們對于如何識別區塊鏈生態中的不同參與者有足夠的知識。這顯然是不正確的假設。

持續的變化:區塊鏈解決方案的架構一直都在演變,這對任何嵌入的規則而言都是挑戰。

特征屬性的數量:創建一條有兩三個參數的規則很簡單,但是試圖創建一條有幾十個甚至上百個參數的規則就沒那么簡單了。要識別出像交易所或OTC柜臺這樣的地址需要大量的特征。

因此我們不能使用預置的規則,我們需要一種可以從區塊鏈數據集中學習模式的機制來自動推斷出有意義的規則讓我們可以標注相關的參與方。從概念上來說,這是一個經典的機器學習問題。

從機器學習的觀點,我們應該從兩個主要途徑來考慮應對去匿名化的挑戰:

無監督學習:無監督學習聚焦于學習指定數據集中存在的模式并識別相關分組。在區塊鏈數據集的上下文中,可以使用無監督學習模型基于地址的特征將其匹配到不同的分組中并對這些分組進行標注。

監督學習:監督學習方法可以利用已有的知識來學習指定數據集中的新的特性。在區塊鏈上下文中,可以使用監督學習方法基于已有的交易所地址數據集訓練一個模型來識別出新的交易所地址。

去匿名化或者給區塊鏈數據集打標簽很少是只用監督學習或者只用非監督學習,更多的情況下需要兩種方法的結合。機器學習模型可以有效地學習區塊鏈生態系統中特定參與者的特征,并利用這些特征來理解其行為。

在使用區塊鏈ETL工具將區塊鏈原始數據加載到數據庫或大數據分析平臺后,將標注層引入區塊鏈數據集是進行更有價值的區塊鏈數據分析的一個關鍵挑戰。

這些標簽提供了更好的上下文環境,也讓區塊鏈分析模型具有更好的可解讀性。不過盡管我們有機器學習這樣強大的工具,去匿名性依然是分析理解區塊鏈生態系統的道路上一個不可忽視的重大路障。

本文來源于“區塊鏈大本營”。

Tags:區塊鏈BTCMINABS區塊鏈存證的特征有BTCVMintGateALPHA Labs

火幣網下載官方app
COM:關于支持ETH伊斯坦布爾升級的公告

尊敬的LOEx用戶:LOEx國際站支持即將到來的以太坊伊斯坦布爾升級。ETH及ERC20代幣的充幣和提幣將在的ETH網絡塊高度9069000之前暫停,預計在2019/12/0612:00暫停ET.

1900/1/1 0:00:00
COIN:關于CoinW平臺創新區交易對調整的公告

親愛的CoinW用戶:CoinW將于9月11日19:00對平臺創新區交易對進行調整,創新區的STX/CNYT、BDG/CNYT、SWTC/CNYT交易對將轉板至平臺低流通區.

1900/1/1 0:00:00
LIF:區塊鏈早餐:行業或將出現并購潮(12月4日,周三)

宏觀政策 據北京日報12月3日消息,12月2日下午,北京市委書記蔡奇來到海淀區中關村集成電路設計園調查研究。蔡奇指出,集成電路產業是戰略性、基礎性產業.

1900/1/1 0:00:00
TPS:FUBT關于不明身份人士惡意冒充官方客服的警示公告

近段以來,FUBT頻繁接到舉報:有不明身份人士惡意冒充FUBT官方客服名義,并通過電話、短信、社交軟件等各種方式欺騙用戶。對此,我們表示強烈譴責。同時鄭重提醒如下.

1900/1/1 0:00:00
DCO:大幣網(Dcoin)12月4日下架6個交易對公告

親愛的大幣網(Dcoin)用戶:為了進一步給您提供更安全、穩定、極致的交易體驗,大幣網(Dcoin)正式實行“定期調整/下架幣種政策”.

1900/1/1 0:00:00
DES:分析:區塊鏈技術彌補現行證據制度缺陷,將極大改革現有信任結構

浙江日報刊登分析文章《區塊鏈技術與司法實踐的思考》。文章指出,我國于2012年明確將電子證據規定為法定證據種類后,涉及電子證據的案例數量出現了井噴式增長.

1900/1/1 0:00:00
ads