2022年,AIGC(生成式AI)是當之無愧的網紅。
AI作畫在各大社交平臺刷屏,ChatGPT火爆國內外出盡了風頭,依靠AI生成語音和表情、動作的數字人也頻頻露臉。2022年12月,Science雜志發布了2022年度科學十大突破,果不其然,AIGC入選。
火爆背后,AIGC的商業化潛力還有待形成更清晰的路徑。目前來看,應用范圍最廣、最出圈的AIGC能力,就是AI作畫(以文生圖),但可以看到,大量普通C端用戶都是抱著嘗鮮的熱情玩一把就走,龐大的流量很少能轉化為強勁的付費意愿。
而對于制作插畫、輔助設計、生成海報等專業需求的B端來說,目前谷歌、OpenAl、百度、騰訊等各大廠開源的模型就足以提供支撐,這一市場能夠激活多大的商業價值,還不明確。
另外,政府提供的扶持性采購,G端市場也是加速AI產業形成良性商業循環的重要組成部分之一,而這類需求主要集中在智慧城市、政務數字化、大數據平臺等,AIGC能夠在其中的哪些場景發揮作用,還有待挖掘。
將火爆的“虛名”轉化為實實在在的money,進一步提升商業空間,是AIGC接下來的當務之急。讓我們來梳理一下,AIGC究竟能通過哪些方法賺到錢。
AIGC需要商業化,這是一個并不難做出的判斷。但如何商業化,需要從技術邏輯來一步步推演。
我們認為,AIGC的商業化會首先發生在AI作畫,也就是以文生圖領域。目前,AIGC已經誕生了文本生成、代碼生成、圖像生成、語音合成、視頻生成,甚至多模態的基礎模型和應用場景。
之所以說AI作畫會率先探索出一條商業化路徑,源于AI商業化的三個基本規則:
第一,AI技術是不斷演進的。
AI技術的商業化,與其他技術相比,有一個非常典型的差異:大多數AI系統在部署后不可避免地會出現錯誤或低效,都需要經歷迭代和持續優化來發揮作用。所以,AI系統落地應用后,一些錯誤是可被容忍的,重點是其帶來的生產力增益,以及自我迭代演進的速度(即與運行環境的適應能力),應該要能夠抵消犯錯所造成的麻煩。
《紐約時報》:2021年硅谷科技巨頭因員工轉投加密行業而出現“離職潮”:12月22日消息,據《紐約時報》報道稱,今年硅谷科技巨頭員工離職加速并開始轉投加密行業,隨著諸如狗狗幣這樣的加密故事在硅谷流傳,越來越多的科技行業最優秀和最聰明的人看到了最新的變革時刻,包括谷歌、蘋果、Meta、Amazon等科技巨頭開始出現“離職潮”。比如區塊鏈域名公司Unstoppable Domains在兩天內已收到350多人的求職申請。為了遏制這種趨勢,谷歌公司開始向老員工提供額外股票贈與,目前谷歌拒絕就此事給予置評。另據投資數據追蹤公司PitchBook透露,今年風投已經向全球加密貨幣和區塊鏈初創企業投入了超過280億美元,是2020年的四倍,其中僅NFT公司就獲得了超過30億美元的投資。[2021/12/22 7:55:52]
而目前來看,只有AI作畫,能夠做到大幅提高內容生產力,同時適當的錯誤是可被允許的。
在DALL·E 2 、Midjourney、NovelAI、Stable Diffusion、文心一格、意間AI等圖像生成模型,對于藝術創作、設計等工作的生產力提升是非常可觀的。原本需要數天甚至數周才能完成的畫作,通過AI就能一秒完成。而且這個領域的模型都非常卷,進化速度很快。因此,盡管一開始AI作畫也會出現一些令人啼笑皆非的問題,比如將人畫成狗、少女吃面卻不會用筷子,但這些小麻煩,和為專業設計從業者節約的時間精力成本相比,確實不算什么。
與之相比,盡管文本生成更先進,ChatGPT一出現就讓全世界為之震驚,但NLP自然語言要做到更高質量的輸出、更具深度的垂直內容,還比較有難度的。代碼生成可能會在短期內對開發人員的生產力產生影響,但這一群體相對比較小眾;語音、視頻、數字人等AIGC應用場景十分值得期待,但目前還沒有看到類似AlphaFold一樣的顛覆性基礎模型出現,目前階段的應用還不夠成熟,Meta發布的短視頻生成系統Make-A-Video,谷歌的文本轉視頻工具Imagen Video等,都沒有掀起較大反響。
所以說,在諸多AIGC應用領域中,AI作畫有望率先進入商業化軌道。
數據:2021年9月穩定幣新增84.83億枚:據Tokenview 區塊瀏覽器數據顯示:2021年1-9月穩定幣共計凈印鈔894.07億枚,相比前8月的809.24億枚,9月穩定幣新增了84.83億枚。9個月來共計印鈔1566.1億枚,銷毀672.03億枚。
9月凈印鈔量排名前3的穩定幣為USDC、USDT、BUSD,分別為82億枚、40億枚、24億枚。[2021/10/8 5:47:52]
第二,AI技術由數據驅動。
數據的重要性,這一點稍微了解人工智能的人都知道,而AIGC要取得優秀的生成效果,離不開大量高質量數據的訓練。這也使得AIGC產品在進入市場時,必須面臨來自技術、法律和倫理的約束。
技術層面,要解決數據來源、標注、隱私計算、訓練資源等問題,其中文本、圖像數據是更容易獲得并使用的。法律層面,AIGC產品商業化必須要解決數據授權的合規問題,而視頻、音頻的版權費用是比較昂貴的,相比之下,AI作畫可以使用開源的圖像數據集,向專業畫師或藝術網站獲得授權,成本上更可控;倫理層面,AIGC受數據驅動,所以最終產品可能會受到臟數據的污染,或原數據就帶有偏見、歧視,要解決這類問題,一般來說需要在數據準備、數據標注上下更多功夫,圖像數據標注目前產業鏈已經非常成熟,通過眾包平臺就可以完成。
從數據層面考慮,AI作畫也更容易解決數據瓶頸、實現數據合規,為后續商業化奠定良好的基礎。
第三,AI技術基于云來使用。
從訓練到推理,AIGC模型的計算量和所需的算力在不同階段存在較大差異,要求極高的基礎設施靈活性,因此,生成模型往往是通過云服務來開發的,在部署時,終端需求也存在一定的不確定性,有可能突然增加,算力需求短時期內膨脹;也可能快速退潮,用戶過把癮之后很快就失去興趣,因此AIGC在提供服務時,云就成了最佳的輸送管道。
AIGC作為一種云上的SaaS軟件能力,讓需求方只需要在使用時接入,承擔一定的用云量或API服務費,就能夠將AIGC引入業務當中,不需要自己訓練開發或自建機房,這無疑是極為劃算的。比如,現在的AI作畫軟件,用戶輸入一段文字,可以通過云端生成備選圖片,而不需要本地GPU或高性能芯片,才能讓普通大眾都玩起來。
動態 | 特朗普2021年預算提案尋求優化加密貨幣政策:金色財經報道,美國總統唐納德·特朗普周一發布了4.8萬億美元的2021財年預算提案。該提案通過將美國特勤局重新納入財政部的管轄范圍,旨在擴大美國財政部的加密貨幣監管范圍。執行報告稱,改組將在特勤局對涉及加密貨幣和金融市場的犯罪行為的調查中“創造新的效率”。[2020/2/11]
云+AI按量付費的商業模式,必然會影響到AIGC產品的前景,就拿云廠商來說,自然更愿意將圖像、視頻類AIGC應用整合到解決方案中,以提升業務收入。與之相比,文本生成想要靠云上接入付費軟件來回收成本,就顯得遙遙無期,比如GPT-3僅訓練費用就高達1200萬美元,但其四個商業化版本中,性能表現最好也最貴的Davinci,每token(大概是4 個字符)收費僅0.06美元,最便宜的版本Ada更是低至0.0008美元。
因此,AI作畫更容易為云服務等產業鏈所關注,與廣闊的產業相結合,通過帶動模型API付費、用云量來完成商業價值的轉換。
從諸多角度判斷,AIGC尤其是AI作畫,有望以超預期的速度進入商業應用階段。這對用戶當然是好消息,意味著很快會有更好更便宜的AI作畫產品被“卷出來”。但對AI企業來說,事情可能就沒那么簡單了。
ToC/ToB/ToG?哪條大路通羅馬?
找到了AI作畫的典型場景,是否就意味著找到了良好的商業模式?大no特no。
目前階段,AI作畫可以在三個領域發揮提升生產力的顯著作用:
一是藝術生成,既可以讓C端用戶來生成繪畫作品,也可以為游戲工作室、創意機構等生成服裝紋理等藝術。
二是廣告創意,也成為“甲方終結者”,通過自動化生成和設計創意草圖,減少設計師與客戶的溝通成本,快速明確設計需求,避免大量反復甚至返工。
三是專業設計,將AI作畫與專業領域的知識相結合,如3D建模、建筑設計、醫療、工業設計等,從而減少這些專業領域制造效果圖的繁重成本,先由AI根據提示制作粗略的草圖,再由專業人員完成后續工作。
聲音 | Longhash:2020年比特幣的Liquid側鏈比閃電網絡更重要:金色財經報道,1月21日,Longhash刊文《2020年比特幣的Liquid側鏈比閃電網絡更重要》。文章指出,在過去的幾年中,閃電網絡引起了很多炒作,因為它可以實現快速/廉價的比特幣交易,而又不會犧牲太多的審查阻力和權力下放。在2017年,隔離見證(SegWit)被添加到比特幣中,使用比特幣進行支付成為一種更好的體驗。但幾乎沒有人愿意用比特幣支付。他們只想持有。由于價格波動、稅收影響和一般可用性等各種問題,目前比特幣的兩個主要用例仍然是存儲價值和投機。根據去年Chainalysis的數據,比特幣活動的90%與交易所有關。因此側鏈Liquid(專注于交易所之間交易)在2020年是一個更重要的項目。[2020/1/21]
當然,還有元宇宙生成數字社區之類的應用,因為還比較小眾,在此就不單獨拿出來講了。
針對上述有望規模應用的典型場景,我們會發現三波力量,它們的商業化情況是各不相同的。
一是研究機構及其衍生公司。
AIGC模型需要在大量數據集上進行預訓練,耗費大量資源成本,這類基礎模型(foundation models)的主要締造者之一,就是科研機構,比如OpenAI(GPT-3、ChatGPT、DALLE等)這樣的非營利性研究機構,或是中科院自動化所(紫東太初大模型)這樣的科研院所。
這類組織幾乎沒有商業化的緊迫困擾,因此能夠將主要精力放在技術突破上,從而締造出強大的基礎模型,后續可能像云服務商一樣,采用按量或按需付費來提供服務。
對于這類組織來說,To C市場雖然流量龐大但付費能力有限,意義更多體現在幫助模型迭代與優化。真正可行的商業化,應該是通過ToB市場服務產業,通過提供API來實現規模經濟;抑或是憑借研究型組織的中立性,承接一定的政府ToG項目,AI作畫在數智化項目中的應用前景,承擔一定的探索任務。
以中科院自動化研究所研制的紫東太初大模型為例,就具備“以圖生音”、“以音生圖”等多模態生成能力,目前主要應用在產業場景,如智能座艙、工業設計、文旅、手語服務等領域。
聲音 | 神魚:把握2020兩個主要趨勢進行挖礦布局:1月3日,F2Pool創始人神魚在魚池大客戶年度答謝宴上發表演講。他指出,2020年面臨比特幣減半行情,行業雖然將經歷短暫的迷茫期,但不用過度擔心。2020年挖礦將有兩個主要趨勢:一是挖礦的回本模型和經濟周期重新跌迭代,二是比特幣將穩固數字黃金的地位,價格保持長期看好趨勢。我們應該針對減半行情、算力、幣價等因素進場布局,收獲收益與驚喜。[2020/1/3]
二是大型科技企業。科技巨頭們積極投入大模型的研發,主要目的是看到大模型作為基礎模型,將是AIGC經濟的新一代基礎設施,大型科技企業往往會因為擁有大量數據而在產品上占據優勢,薪資和工作環境更容易吸引精英技術人才,因此,通用類生成模型越來越向頭部企業集中,谷歌、Meta、百度、騰訊、華為等企業都在積極投入。
大型科技企業在AIGC領域的成功占位,能夠吸引大量AI開發者和ISV服務商匯聚到自己的生態上來,構筑活躍的商業氛圍。那么,在生態搭建起來之后,到底去哪里收錢呢?
目前來看,AIGC的商業模式非常符合AI to B模式的發展邏輯,甚至可以說是必然選擇。首先,基礎產品+項目制。
To B市場有各種層次,其中一些營收合理的項目,主要還是智慧城市、交通改造之類的項目,其中大型科技企業有著先天的技術優勢、品牌優勢、執行能力,由其作為牽引來為大型項目提供集成式、定制化的AIGC能力,從而實現研發回收。
另一種則是基礎產品+云服務。通過API提供基礎模型能力,將自身AI能力經由大量下游企業,嵌入到各行各業的應用場景中去,解鎖更多AIGC的產業價值,也能帶動科技企業自身的云服務、算法、技術解決方案的增長。
大型科技企業的商業化挑戰,則來自其通常會吸引管理者的嚴格監管,以及來自大眾的道德審查和倫理監督。
比如大型企業的AI作畫軟件如果出現違規使用藝術家的畫作進行訓練,必然會引發輿論的風波;在一些地區,谷歌、Meta都因數據的不良使用而被開出過巨額罰單,目前對大型科技公司開發和部署 AI的監管也在加強。
三是中小和初創企業。不是所有企業都需要自己訓練和開發AIGC大模型,一家科技巨頭也不可能通吃所有算法模型,隨著上述兩類組織將基礎模型和資源開放出來,AI作畫的部署成本逐漸降低,大量中小企業和初創團隊可以在通用大模型的基礎上,探索新的商業模式、產品或服務,形成單一平臺/模型+大量企業+無數開發者的AI軟件生態。
對于這類企業來說,由于時間和資源有限,通過調用API再創新,快速構建定制化的產品和服務,快速響應市場需求,獲得收入。比如AI作畫火爆之后,就有大量由個人開發者或初創企業開發的AI繪畫小程序和工具相繼上線。
這類企業容易產出明星應用,比如前不久的意間AI繪畫小程序,11月11日單日用戶增加 65.7萬人,火爆程度可見一斑。但ToC應用的核心挑戰是使用場景單一,一旦用戶興趣退潮,拉新和運營成本會陡然增長,產品必須重新探索增長方式。資本市場的退出通道,即通過上市/收購/多輪融資來完成退出,這條路徑在今天已經變得非常艱難了。
另一個可能率先火熱起來的市場則是企業服務,與垂直行業相結合,基于基礎模型形成標準化程度高、成本與回饋模型成熟的ToB垂類解決方案。從這一年來的市場反響來看,AI作畫的垂類應用,會率先在創意設計、電商、工業設計、建筑、城市改造等行業火爆起來,主要表現在繁瑣美工任務的自動化生成,通過軟件收入、服務費、訂閱費等形式來獲得商業變現。
顯而易見的是,當這三類企業:科研機構、大型科技企業、中小型及初創團隊,都能夠在B端產業場景中,找到適合自己的利基市場,形成規模效應,那么就意味著AIGC商業化周期真正打開了。
2022年,一個個AIGC模型橫空出世,獲得了極高的活躍度,也孕育了一個新的市場版圖。那么,2023年,AIGC模型們可以開始賺錢了嗎?
今天來看,大模型持續涌現并不斷迭代,AI基礎設施愈發完善,技術企業和開發者的熱情也非常充沛,但與廣闊的產業世界還有著一定的信息差,不縮短二者之間的差距,AIGC商業化就不會到來。只有當AI作畫模型的應用者數量,以及應用場景的深度,達到一定的規模,才意味著企業服務的To B長尾市場被徹底撬開。
從前文中大家可能看到,通過基礎模型和API來構建新一代基礎設施的機構和科技企業,是AIGC產業的根基,那么在接下來的2023中,這類機構和企業就需要承擔起加速AIGC商業化成熟的任務。
如果順利的話,我們會在未來一年中,看到:
1.AIGC產品工具化。
目前,一些AI作畫大模型的應用門檻依然偏高,大范圍應用還有非常多的挑戰,二手交易平臺上還出現了“代跑AI繪畫”服務,可以幫助客戶使用海外AI作畫軟件來生成作品,抑或是優化關鍵詞,來生成更準確、更合理的作品。而未來,AI作畫這類大模型會將能力封裝得更加完善、簡單、易用,并與垂直行業知識、多樣化算力資源等橫向、縱向打通,以滿足各類型開發者和企業的應用需求,以最低成本完成AIGC能力的調用。
2.大模型技術自主化。
AIGC應用與數智化相結合,在目前階段還非常新穎,也充滿想象。比如基于AI大模型生成城市交通設計方案、城市綠地規劃等。一旦進入產業規模化應用階段,就需要面臨一個問題,基礎模型是所有AIGC應用的支撐,而一些海外大模型如OpenAI系列是不支持大陸地區訪問的,當大家都在為GPT3.5、ChatGPT而感到震驚時,也不能忽視軟件上“卡脖子”的味道。
2023年,AIGC要與產業智能化相融合,還要解決底層模型安全、可控、領先的問題,變得愈發緊迫。
3.產業鏈趨于完善和順暢。
2022年,我們看到的是各種AIGC模型的你追我趕、爭奇斗艷,要將AIGC從小眾需求變成大眾需求,進一步提升AIGC的商業空間,靠的不是某一個模型的一呼百應,而是開發者、ISV服務商、云廠商、互聯網公司、傳統企業等產業鏈角色,都能夠與AIGC對齊,知道自己應該如何用好AIGC,如何找到/賣出自己所需要的AIGC產品。
目前,AIGC領域的產業集中度還比較低,應用場景也較為單一,既需要基礎模型的企業來教育市場、構建典型案例,也需要大量代理商、云服務商來推動供需匹配,開發者充分釋放腦洞和創意,挖掘AIGC實際場景……這些都需要一個完善且順暢的產業生態體系。
4.行業標準和倫理基本形成共識。
一致認可的行業技術標準,是AI商業化的重要推動者。尤其是AIGC這樣涉及個人創作的領域,在模型訓練與開發過程中可能缺乏透明度和可解釋性,必須采取額外的努力來培養公眾的信心,避免因數據濫用、版權問題而造成AI技術的不信任。
對此,基礎模型的開發者更有能力與責任去推動行業技術標準和市場規范的建立,一來,可以減輕后續商業化的長期風險,避免修改可能導致的成本;二來可以在早期就建立開發者/代理商/用戶對AIGC產品的信任,確保產品符合倫理規范與法律法規;三來,技術標準也有助于競爭力的建立,為后續市場活動建立邊界。
2022年,AI作畫引發了大量個人藝術家的抵觸和擔憂,版權問題目前還沒有明確的共識和定義,這一點有望在2023年通過行業標準、規范與共識而帶來改變。
AIGC的商業化繁榮,本質上是構建一個從實驗室到產業地帶的AI落地通道。只有將上述基石一個個搭建好,完成商業化所需要的前期準備,才能真正迎來規模化大爆發的“奇點”。
36氪
媒體專欄
閱讀更多
金色財經 子木
金色早8點
去中心化金融社區
虎嗅科技
區塊律動BlockBeats
CertiK中文社區
深潮TechFlow
念青
Odaily星球日報
騰訊研究院
《聯合早報》中文版12月16日報道:數據顯示,新加坡是第九大加密貨幣欺詐目標市場,自2011年以來共發生四次黑客攻擊和漏洞,損失高達1460萬美元(約1969萬新元).
1900/1/1 0:00:00圖片來源:由 無界版圖AI 工具生成市值是加密貨幣價值合法化最常用的指標之一。我們經常聽說一個代幣進入市值前 10 名,像 BNB 這樣的代幣在進入前 5 名后成為頭條新聞,鞏固了它在加密生態系.
1900/1/1 0:00:00文:薛永瑋 11月,加密貨幣交易所FTX爆雷,上百萬持有FTX資金的投資者血本無歸。被稱為“幣圈神童”的FTX創始人SBF告別16億美元身家,自稱“只剩一張信用卡和10萬美元存款”.
1900/1/1 0:00:00原文來源于 Pantera Capital,原文標題《無需信任系統的必要性》,作者 DAN MOREHEAD、CHIA JENG YANG、JESUS ROBLES III.
1900/1/1 0:00:00文:MIHAILO BJELIC零知識虛擬機有可能徹底改變智能合約的可移植性,消除加密貨幣大規模采用的最后障礙。很少有項目能夠接近以太坊網絡的安全性和去中心化.
1900/1/1 0:00:00圖片來源:由 無界版圖AI 工具生成頂級加密風投正紛紛下場做以太坊節點客戶端,前有 a16z 推出以太坊輕客戶端 Helios,后有 Paradigm 構建以太坊執行層 Reth.
1900/1/1 0:00:00